Perforated Spiral

Perforated Spiral

08 March, 2024

12-Colouring

31212090612031212090612

n-colouring 31212090612031212090612

Loop Cycles

\(({f_4},{t_2})\;\)\(({f_1},{f_3},{t_1})\;\)\(8\mathord*({f_1},{f_5})\;\)

Gyre Multipliers

\(-\)

Growth

Single Tile Boundary Vertices

Topology Type

Infinite Genus

Skeleton Type

None

Files

graphML Download

Embedding

Notes

The spiraling surface made up of dodecagons can be broken down into dodecagon rings. The ring radius is variable.

Dual Group

\(G_d=\)\(\left\langle \: S_d \:\middle|\:R_d\:\right\rangle\)
\(S_d=\)\(f_1,\:\)\(f_2,\:\)\(f_3,\:\)\(f_4,\:\)\(f_5,\:\)\(f_6,\:\)\(t_1,\:\)\(t_2,\:\)\(t_3\)
\(R_d=\)\(f_4t_2,\:\)\(f_1f_3t_1,\:\)\((f_1f_5)^8\)
\(|G_d|=\)\(Infinite\)