Hendecagonal Triply Periodic I

Hendecagonal Triply Periodic I

24 March, 2023

11-Colouring

110031111080401101107

n-colouring 110031111080401101107

Loop Cycles

\(2\mathord*(f2,f3)\;\)\((t_1-,f1,t_4-,f2)\;\)\(2\mathord*(t_2)\;\)\(3\mathord*(t_3)\;\)

Gyre Multipliers

\(-\)

Growth

Single Tile Boundary Vertices

Topology Type

Infinite Genus

Skeleton Type

3-periodic reo

Files

graphML Download

Embedding

Notes

Self-intersecting triply periodic surface tiled by hendecagonal tiles.

Dual Group

\(G_d=\)\(\left\langle \: S_d \:\middle|\:R_d\:\right\rangle\)
\(S_d=\)\({f_1},\:\)\({f_2},\:\)\({f_3},\:\)\({t_1},\:\)\({t_2},\:\)\({t_3},\:\)\({t_4}\)
\(R_d=\)\({f_1}^2,\:\)\({f_2}^2,\:\)\({f_3}^2,\:\)\({t_1}^3,\:\)\({t_4}^{-3},\:\)\({f_1}{f_2}{t_2},\:\)\({t_1}{t_3}{t_2},\:\)\({t_4}^{-1}{f_3}{t_3},\:\)\({t_2}^2,\:\)\({t_3}^3,\:\)\(({f_3}{f_2})^2,\:\)\({f_2}{t_1}^{-1}{f_1}{t_4}^{-1}\)
\(|G_d|=\)\(Infinite\)