Decagonal Double Cover Dodecahedron II

Decagonal Double Cover Dodecahedron II

21 February, 2023

10-Colouring

1090109050109010905

n-colouring 1090109050109010905

Loop Cycles

\((t_1-,t_4+)\;\)\(2\mathord*(t_3)\;\)

Gyre Multipliers

\(-\)

Growth

Single Tile Boundary Vertices

Topology Type

Toroidal

Skeleton Type

Tetrahedron (tet)

Files

graphML Download

Embedding

Notes

This peculiar decagonal tilegraph covers a regular dodecahedron twice as does Decagonal Double Cover Dodecahedral Net, but based on a different tile and a different looping rule. And thus the dual pictured above is also different, it forms a dodecahedral structure, but with doubled edges. The tilegraph is vertex-, edge- and face-transitive.

Dual Group

\(G_d=\)\(\left\langle \: S_d \:\middle|\:R_d\:\right\rangle\)
\(S_d=\)\({t_1},\:\)\({t_2},\:\)\({t_3},\:\)\({t_4},\:\)\({t_5}\)
\(R_d=\)\({t_1}^3,\:\)\({t_2}^3,\:\)\({t_4}^{-3},\:\)\({t_5}^{-3},\:\)\({t_1}{t_3}{t_2},\:\)\({t_4}^{-1}{t_5}^{-1}{t_3},\:\)\({t_3}^2,\:\)\({t_4}^{-1}{t_1}\)
\(|G_d|=\)\(12\)

Vertex Group

\(G_v=\)\(\left\langle \: S_v \:\middle|\:R_v\:\right\rangle\)
\(S_v=\)\(a,\:\)\(b,\:\)\(c\)
\(R_v=\)\(a^2,\:\)\(b^3,\:\)\((bc^{-1})^2,\:\)\(abab^{-1},\:\)\((cb^{-1}ac)^2,\:\)\((c^{-1}aca)^2,\:\)\((b^{-1}c^{-4})^2,\:\)\((c^{-1}abc^{-1}*a)^2\)
\(|G_v|=\)\(480\)