Classic Muoctahedron

Classic Muoctahedron

29 April, 2023

6-Colouring

264264

n-colouring 264264

Loop Cycles

\(4\mathord*(t_1)\;\)\(2\mathord*(t_1-,f2)\;\)\(4\mathord*(t_2)\;\)\(2\mathord*(t_2-,f1)\;\)

Gyre Multipliers

\(-\)

Growth

Single Tile Boundary Vertices

Topology Type

Infinite Genus

Skeleton Type

Primitive Cubic Lattice (pcu)

Files

graphML Download

Embedding

Notes

The classic muoctahedron as discovered by Petrie and Coxeter in the 30s. More can be found here.

Dual Group

\(G_d=\)\(\left\langle \: S_d \:\middle|\:R_d\:\right\rangle\)
\(S_d=\)\({f_1},\:\)\({f_2},\:\)\({t_1},\:\)\({t_2}\)
\(R_d=\)\({f_1}^2,\:\)\({f_2}^2,\:\)\(({f_1}{t_1}^{-1})^2,\:\)\(({f_2}{t_2}^{-1})^2,\:\)\(({t_1}^{-1}{t_2}^{-1})^2,\:\)\({t_1}^4,\:\)\({t_2}^4,\:\)\(({t_1}^{-1}{f_2})^2,\:\)\(({t_2}^{-1}{f_1})^2\)
\(|G_d|=\)\(Infinite\)