Classic Muoctahedron29 April, 20236-Colouring264264Loop Cycles\(4\mathord*(t_1)\;\)\(2\mathord*(t_1-,f2)\;\)\(4\mathord*(t_2)\;\)\(2\mathord*(t_2-,f1)\;\)Gyre Multipliers\(-\)GrowthSingle Tile Boundary VerticesTopology TypeInfinite GenusSkeleton TypePrimitive Cubic Lattice (pcu)FilesgraphML DownloadEmbeddingView 3d ModelNotesThe classic muoctahedron as discovered by Petrie and Coxeter in the 30s. More can be found here.Dual Group\(G_d=\)\(\left\langle \: S_d \:\middle|\:R_d\:\right\rangle\)\(S_d=\)\({f_1},\:\)\({f_2},\:\)\({t_1},\:\)\({t_2}\)\(R_d=\)\({f_1}^2,\:\)\({f_2}^2,\:\)\(({f_1}{t_1}^{-1})^2,\:\)\(({f_2}{t_2}^{-1})^2,\:\)\(({t_1}^{-1}{t_2}^{-1})^2,\:\)\({t_1}^4,\:\)\({t_2}^4,\:\)\(({t_1}^{-1}{f_2})^2,\:\)\(({t_2}^{-1}{f_1})^2\)\(|G_d|=\)\(Infinite\)