9-Colourings
There are a total of 294 9-Colourings. You can browse them below.
Use the drop down to restrict the list to 9-Colourings that tile the hyperbolic or euclidian plane regularly.
Pivot Incidence
No Filter
Regular
Tile | Tiling | Signature/ Index | n-Colouring | Gyre Count | Tile-Vertex Incidence |
---|---|---|---|---|---|
\(4t^1f\) 181818189 | \(t1,t1,t2,t2,t3,t3,t4,t4,f\) | 5 | 3,5,3,5,3,5,3,5,5 | ||
\(3t^1t^2f\) 181818297 | \(t1,t1,t2,t2,t3,t3,t4,f,t4\) | 5 | 3,4,3,4,3,4,4,4,4 | ||
\(3t^13f\) 181818999 | \(t1,t1,t2,t2,t3,t3,f,f,f\) | 4 | 3,6,3,6,3,6,6,6,6 | ||
\(2t^12t^2f\) 181822779 | \(t1,t1,t2,t2,t3,t4,t3,t4,f\) | 3 | 3,7,3,7,7,7,7,7,7 | ||
\(2t^1t^2t^3f\) 181823796 | \(t1,t1,t2,t2,t3,t4,t3,f,t4\) | 3 | 3,7,3,7,7,7,7,7,7 | ||
\(2t^1t^23f\) 181829799 | \(t1,t1,t2,t2,t3,f,t3,f,f\) | 4 | 3,5,3,5,4,4,5,5,5 | ||
\(2t^1t^3t^1f\) 181831869 | \(t1,t1,t2,t2,t3,t4,t4,t3,f\) | 5 | 3,4,3,4,4,3,4,4,4 | ||
\(2t^12t^3f\) 181833966 | \(t1,t1,t2,t2,t3,t4,f,t3,t4\) | 3 | 3,7,3,7,7,7,7,7,7 | ||
\(2t^1t^3ft^2\) 181839267 | \(t1,t1,t2,t2,t3,f,t4,t3,t4\) | 3 | 3,7,3,7,7,7,7,7,7 | ||
\(2t^1t^33f\) 181839969 | \(t1,t1,t2,t2,t3,f,f,t3,f\) | 4 | 3,4,3,4,3,3,3,4,4 | ||
\(2t^1t^4t^1f\) 181841895 | \(t1,t1,t2,t2,t3,t4,t4,f,t3\) | 5 | 3,3,3,3,3,3,3,3,3 | ||
\(2t^1t^4t^2f\) 181842975 | \(t1,t1,t2,t2,t3,t4,f,t4,t3\) | 5 | 3,3,3,3,4,4,4,4,3 | ||
\(2t^1t^4ft^1\) 181849185 | \(t1,t1,t2,t2,t3,f,t4,t4,t3\) | 5 | 3,3,3,3,3,3,3,3,3 | ||
\(2t^1t^43f\) 181849995 | \(t1,t1,t2,t2,t3,f,f,f,t3\) | 4 | 3,3,3,3,4,4,4,4,3 | ||
\(2t^1ft^12f\) 181891899 | \(t1,t1,t2,t2,f,t3,t3,f,f\) | 4 | 3,6,3,6,6,3,6,6,6 | ||
\(2t^1f2t^2\) 181892277 | \(t1,t1,t2,t2,f,t3,t4,t3,t4\) | 3 | 3,7,3,7,7,7,7,7,7 | ||
\(2t^1ft^22f\) 181892979 | \(t1,t1,t2,t2,f,t3,f,t3,f\) | 4 | 3,5,3,5,5,4,4,5,5 | ||
\(2t^1ft^3t^1\) 181893186 | \(t1,t1,t2,t2,f,t3,t4,t4,t3\) | 5 | 3,4,3,4,4,4,3,4,4 | ||
\(2t^1ft^32f\) 181893996 | \(t1,t1,t2,t2,f,t3,f,f,t3\) | 4 | 3,4,3,4,4,3,3,3,4 | ||
\(2t^12ft^1f\) 181899189 | \(t1,t1,t2,t2,f,f,t3,t3,f\) | 4 | 3,6,3,6,6,6,3,6,6 |
...