9-Colourings

9-Colourings

There are a total of 294 9-Colourings. You can browse them below.

Use the drop down to restrict the list to 9-Colourings that tile the hyperbolic or euclidian plane regularly.

Pivot Incidence
TileTilingSignature/
Index
n-ColouringGyre
Count
Tile-Vertex
Incidence
tile 181818189
\(4t^1f\)
181818189
\(t1,t1,t2,t2,t3,t3,t4,t4,f\)53,5,3,5,3,5,3,5,5
tile 181818297
\(3t^1t^2f\)
181818297
\(t1,t1,t2,t2,t3,t3,t4,f,t4\)53,4,3,4,3,4,4,4,4
tile 181818999
\(3t^13f\)
181818999
\(t1,t1,t2,t2,t3,t3,f,f,f\)43,6,3,6,3,6,6,6,6
tile 181822779
\(2t^12t^2f\)
181822779
\(t1,t1,t2,t2,t3,t4,t3,t4,f\)33,7,3,7,7,7,7,7,7
tile 181823796
\(2t^1t^2t^3f\)
181823796
\(t1,t1,t2,t2,t3,t4,t3,f,t4\)33,7,3,7,7,7,7,7,7
tile 181829799
\(2t^1t^23f\)
181829799
\(t1,t1,t2,t2,t3,f,t3,f,f\)43,5,3,5,4,4,5,5,5
tile 181831869
\(2t^1t^3t^1f\)
181831869
\(t1,t1,t2,t2,t3,t4,t4,t3,f\)53,4,3,4,4,3,4,4,4
tile 181833966
\(2t^12t^3f\)
181833966
\(t1,t1,t2,t2,t3,t4,f,t3,t4\)33,7,3,7,7,7,7,7,7
tile 181839267
\(2t^1t^3ft^2\)
181839267
\(t1,t1,t2,t2,t3,f,t4,t3,t4\)33,7,3,7,7,7,7,7,7
tile 181839969
\(2t^1t^33f\)
181839969
\(t1,t1,t2,t2,t3,f,f,t3,f\)43,4,3,4,3,3,3,4,4
tile 181841895
\(2t^1t^4t^1f\)
181841895
\(t1,t1,t2,t2,t3,t4,t4,f,t3\)53,3,3,3,3,3,3,3,3
tile 181842975
\(2t^1t^4t^2f\)
181842975
\(t1,t1,t2,t2,t3,t4,f,t4,t3\)53,3,3,3,4,4,4,4,3
tile 181849185
\(2t^1t^4ft^1\)
181849185
\(t1,t1,t2,t2,t3,f,t4,t4,t3\)53,3,3,3,3,3,3,3,3
tile 181849995
\(2t^1t^43f\)
181849995
\(t1,t1,t2,t2,t3,f,f,f,t3\)43,3,3,3,4,4,4,4,3
tile 181891899
\(2t^1ft^12f\)
181891899
\(t1,t1,t2,t2,f,t3,t3,f,f\)43,6,3,6,6,3,6,6,6
tile 181892277
\(2t^1f2t^2\)
181892277
\(t1,t1,t2,t2,f,t3,t4,t3,t4\)33,7,3,7,7,7,7,7,7
tile 181892979
\(2t^1ft^22f\)
181892979
\(t1,t1,t2,t2,f,t3,f,t3,f\)43,5,3,5,5,4,4,5,5
tile 181893186
\(2t^1ft^3t^1\)
181893186
\(t1,t1,t2,t2,f,t3,t4,t4,t3\)53,4,3,4,4,4,3,4,4
tile 181893996
\(2t^1ft^32f\)
181893996
\(t1,t1,t2,t2,f,t3,f,f,t3\)43,4,3,4,4,3,3,3,4
tile 181899189
\(2t^12ft^1f\)
181899189
\(t1,t1,t2,t2,f,f,t3,t3,f\)43,6,3,6,6,6,3,6,6
...