8-Colourings
There are a total of 108 8-Colourings. You can browse them below.
Use the drop down to restrict the list to 8-Colourings that tile the hyperbolic or euclidian plane regularly.
Pivot Incidence
No Filter
Regular
Tile | Tiling | Signature/ Index | n-Colouring | Gyre Count | Tile-Vertex Incidence |
---|---|---|---|---|---|
\(4t^1\) 17171717 | \(t1,t1,t2,t2,t3,t3,t4,t4\) | 5 | 3,4,3,4,3,4,3,4 | ||
\(3t^12f\) 17171788 | \(t1,t1,t2,t2,t3,t3,f,f\) | 4 | 3,5,3,5,3,5,5,5 | ||
\(2t^12t^2\) 17172266 | \(t1,t1,t2,t2,t3,t4,t3,t4\) | 3 | 3,6,3,6,6,6,6,6 | ||
\(2t^1t^22f\) 17172868 | \(t1,t1,t2,t2,t3,f,t3,f\) | 4 | 3,4,3,4,4,4,4,4 | ||
\(2t^1t^3t^1\) 17173175 | \(t1,t1,t2,t2,t3,t4,t4,t3\) | 5 | 3,3,3,3,4,3,4,3 | ||
\(2t^1t^32f\) 17173885 | \(t1,t1,t2,t2,t3,f,f,t3\) | 4 | 3,3,3,3,3,3,3,3 | ||
\(2t^1ft^1f\) 17178178 | \(t1,t1,t2,t2,f,t3,t3,f\) | 4 | 3,5,3,5,5,3,5,5 | ||
\(2t^1ft^2f\) 17178286 | \(t1,t1,t2,t2,f,t3,f,t3\) | 4 | 3,4,3,4,4,4,4,4 | ||
\(2t^14f\) 17178888 | \(t1,t1,t2,t2,f,f,f,f\) | 3 | 3,6,3,6,6,6,6,6 | ||
\(t^12t^22f\) 17226688 | \(t1,t1,t2,t3,t2,t3,f,f\) | 2 | 3,7,7,7,7,7,7,7 | ||
\(t^1t^2t^3t^2\) 17236256 | \(t1,t1,t2,t3,t2,t4,t3,t4\) | 3 | 3,3,4,4,3,4,4,3 | ||
\(t^1t^2t^32f\) 17236858 | \(t1,t1,t2,t3,t2,f,t3,f\) | 2 | 3,7,7,7,7,7,7,7 | ||
\(t^1t^2t^4t^1\) 17246174 | \(t1,t1,t2,t3,t2,t4,t4,t3\) | 3 | 3,6,6,6,6,3,6,6 | ||
\(t^1t^2t^42f\) 17246884 | \(t1,t1,t2,t3,t2,f,f,t3\) | 2 | 3,7,7,7,7,7,7,7 | ||
\(t^1t^2ft^1f\) 17286178 | \(t1,t1,t2,f,t2,t3,t3,f\) | 4 | 3,4,4,4,4,3,4,4 | ||
\(t^1t^2ft^2f\) 17286286 | \(t1,t1,t2,f,t2,t3,f,t3\) | 4 | 3,3,4,4,3,4,4,3 | ||
\(t^1t^24f\) 17286888 | \(t1,t1,t2,f,t2,f,f,f\) | 3 | 3,5,4,4,5,5,5,5 | ||
\(t^1t^3t^12f\) 17317588 | \(t1,t1,t2,t3,t3,t2,f,f\) | 4 | 3,4,4,3,4,4,4,4 | ||
\(t^13t^3\) 17333555 | \(t1,t1,t2,t3,t4,t2,t3,t4\) | 3 | 3,4,3,4,3,4,3,4 | ||
\(t^12t^32f\) 17338558 | \(t1,t1,t2,t3,f,t2,t3,f\) | 2 | 3,7,7,7,7,7,7,7 |
...