8-Colourings

8-Colourings

There are a total of 108 8-Colourings. You can browse them below.

Use the drop down to restrict the list to 8-Colourings that tile the hyperbolic or euclidian plane regularly.

Pivot Incidence
TileTilingSignature/
Index
n-ColouringGyre
Count
Tile-Vertex
Incidence
tile 17171717
\(4t^1\)
17171717
\(t1,t1,t2,t2,t3,t3,t4,t4\)53,4,3,4,3,4,3,4
tile 17171788
\(3t^12f\)
17171788
\(t1,t1,t2,t2,t3,t3,f,f\)43,5,3,5,3,5,5,5
tile 17172266
\(2t^12t^2\)
17172266
\(t1,t1,t2,t2,t3,t4,t3,t4\)33,6,3,6,6,6,6,6
tile 17172868
\(2t^1t^22f\)
17172868
\(t1,t1,t2,t2,t3,f,t3,f\)43,4,3,4,4,4,4,4
tile 17173175
\(2t^1t^3t^1\)
17173175
\(t1,t1,t2,t2,t3,t4,t4,t3\)53,3,3,3,4,3,4,3
tile 17173885
\(2t^1t^32f\)
17173885
\(t1,t1,t2,t2,t3,f,f,t3\)43,3,3,3,3,3,3,3
tile 17178178
\(2t^1ft^1f\)
17178178
\(t1,t1,t2,t2,f,t3,t3,f\)43,5,3,5,5,3,5,5
tile 17178286
\(2t^1ft^2f\)
17178286
\(t1,t1,t2,t2,f,t3,f,t3\)43,4,3,4,4,4,4,4
tile 17178888
\(2t^14f\)
17178888
\(t1,t1,t2,t2,f,f,f,f\)33,6,3,6,6,6,6,6
tile 17226688
\(t^12t^22f\)
17226688
\(t1,t1,t2,t3,t2,t3,f,f\)23,7,7,7,7,7,7,7
tile 17236256
\(t^1t^2t^3t^2\)
17236256
\(t1,t1,t2,t3,t2,t4,t3,t4\)33,3,4,4,3,4,4,3
tile 17236858
\(t^1t^2t^32f\)
17236858
\(t1,t1,t2,t3,t2,f,t3,f\)23,7,7,7,7,7,7,7
tile 17246174
\(t^1t^2t^4t^1\)
17246174
\(t1,t1,t2,t3,t2,t4,t4,t3\)33,6,6,6,6,3,6,6
tile 17246884
\(t^1t^2t^42f\)
17246884
\(t1,t1,t2,t3,t2,f,f,t3\)23,7,7,7,7,7,7,7
tile 17286178
\(t^1t^2ft^1f\)
17286178
\(t1,t1,t2,f,t2,t3,t3,f\)43,4,4,4,4,3,4,4
tile 17286286
\(t^1t^2ft^2f\)
17286286
\(t1,t1,t2,f,t2,t3,f,t3\)43,3,4,4,3,4,4,3
tile 17286888
\(t^1t^24f\)
17286888
\(t1,t1,t2,f,t2,f,f,f\)33,5,4,4,5,5,5,5
tile 17317588
\(t^1t^3t^12f\)
17317588
\(t1,t1,t2,t3,t3,t2,f,f\)43,4,4,3,4,4,4,4
tile 17333555
\(t^13t^3\)
17333555
\(t1,t1,t2,t3,t4,t2,t3,t4\)33,4,3,4,3,4,3,4
tile 17338558
\(t^12t^32f\)
17338558
\(t1,t1,t2,t3,f,t2,t3,f\)23,7,7,7,7,7,7,7
...