7-Colourings

7-Colourings

There are a total of 34 7-Colourings. You can browse them below.

Use the drop down to restrict the list to 7-Colourings that tile the hyperbolic or euclidian plane regularly.

Pivot Incidence
TileTilingSignature/
Index
n-ColouringGyre
Count
Tile-Vertex
Incidence
tile 1616167
\(3t^1f\)
1616167
\(t1,t1,t2,t2,t3,t3,f\)43,4,3,4,3,4,4
tile 1616275
\(2t^1t^2f\)
1616275
\(t1,t1,t2,t2,t3,f,t3\)43,3,3,3,4,4,3
tile 1616777
\(2t^13f\)
1616777
\(t1,t1,t2,t2,f,f,f\)33,5,3,5,5,5,5
tile 1622557
\(t^12t^2f\)
1622557
\(t1,t1,t2,t3,t2,t3,f\)23,6,6,6,6,6,6
tile 1623574
\(t^1t^2t^3f\)
1623574
\(t1,t1,t2,t3,t2,f,t3\)23,6,6,6,6,6,6
tile 1627577
\(t^1t^23f\)
1627577
\(t1,t1,t2,f,t2,f,f\)33,4,4,4,4,4,4
tile 1631647
\(t^1t^3t^1f\)
1631647
\(t1,t1,t2,t3,t3,t2,f\)43,3,4,3,4,3,3
tile 1633744
\(t^12t^3f\)
1633744
\(t1,t1,t2,t3,f,t2,t3\)23,6,6,6,6,6,6
tile 1637245
\(t^1t^3ft^2\)
1637245
\(t1,t1,t2,f,t3,t2,t3\)23,6,6,6,6,6,6
tile 1637747
\(t^1t^33f\)
1637747
\(t1,t1,t2,f,f,t2,f\)33,3,3,3,3,3,3
tile 1641673
\(t^1t^4t^1f\)
1641673
\(t1,t1,t2,t3,t3,f,t2\)43,4,3,3,3,3,4
tile 1642753
\(t^1t^4t^2f\)
1642753
\(t1,t1,t2,t3,f,t3,t2\)43,4,4,4,4,4,4
tile 1647773
\(t^1t^43f\)
1647773
\(t1,t1,t2,f,f,f,t2\)33,4,4,4,4,4,4
tile 1671677
\(t^1ft^12f\)
1671677
\(t1,t1,f,t2,t2,f,f\)33,5,5,3,5,5,5
tile 1672255
\(t^1f2t^2\)
1672255
\(t1,t1,f,t2,t3,t2,t3\)23,6,6,6,6,6,6
tile 1672757
\(t^1ft^22f\)
1672757
\(t1,t1,f,t2,f,t2,f\)33,4,4,4,4,4,4
tile 1673774
\(t^1ft^32f\)
1673774
\(t1,t1,f,t2,f,f,t2\)33,3,3,3,3,3,3
tile 1677275
\(t^12ft^2f\)
1677275
\(t1,t1,f,f,t2,f,t2\)33,4,4,4,4,4,4
tile 1677777
\(t^15f\)
1677777
\(t1,t1,f,f,f,f,f\)23,6,6,6,6,6,6
tile 2255275
\(3t^2f\)
2255275
\(t1,t2,t1,t2,t3,f,t3\)25,5,5,5,4,4,5
...