6-Colourings

6-Colourings

There are a total of 18 6-Colourings. You can browse them below.

Use the drop down to restrict the list to 6-Colourings that tile the hyperbolic or euclidian plane regularly.

Pivot Incidence
TileTilingSignature/
Index
n-ColouringGyre
Count
Tile-Vertex
Incidence
tile 151515
\(3t^1\)
151515
\(t1,t1,t2,t2,t3,t3\)43,3,3,3,3,3
tile 151566
\(2t^12f\)
151566
\(t1,t1,t2,t2,f,f\)33,4,3,4,4,4
tile 152244
\(t^12t^2\)
152244
\(t1,t1,t2,t3,t2,t3\)23,5,5,5,5,5
tile 152646
\(t^1t^22f\)
152646
\(t1,t1,t2,f,t2,f\)33,3,4,4,3,3
tile 153153
\(t^1t^3t^1\)
153153
\(t1,t1,t2,t3,t3,t2\)43,4,4,3,4,4
tile 153663
\(t^1t^32f\)
153663
\(t1,t1,t2,f,f,t2\)33,4,3,3,3,4
tile 156156
\(t^1ft^1f\)
156156
\(t1,t1,f,t2,t2,f\)33,4,4,3,4,4
tile 156264
\(t^1ft^2f\)
156264
\(t1,t1,f,t2,f,t2\)33,3,3,4,4,3
tile 156666
\(t^14f\)
156666
\(t1,t1,f,f,f,f\)23,5,5,5,5,5
tile 224466
\(2t^22f\)
224466
\(t1,t2,t1,t2,f,f\)16,6,6,6,6,6
tile 234234
\(t^2t^3t^2\)
234234
\(t1,t2,t1,t3,t2,t3\)24,4,4,4,4,4
tile 234636
\(t^2t^32f\)
234636
\(t1,t2,t1,f,t2,f\)16,6,6,6,6,6
tile 264264
\(t^2ft^2f\)
264264
\(t1,f,t1,t2,f,t2\)34,4,4,4,4,4
tile 264666
\(t^24f\)
264666
\(t1,f,t1,f,f,f\)24,4,4,4,4,4
tile 333333
\(3t^3\)
333333
\(t1,t2,t3,t1,t2,t3\)23,3,3,3,3,3
tile 336336
\(2t^32f\)
336336
\(t1,t2,f,t1,t2,f\)16,6,6,6,6,6
tile 366366
\(t^34f\)
366366
\(t1,f,f,t1,f,f\)23,3,3,3,3,3
tile 666666
\(6f\)
666666
\(f,f,f,f,f,f\)16,6,6,6,6,6