11-Colourings

11-Colourings

There are a total of 10 11-Colourings. You can browse them below.

Use the drop down to restrict the list to 11-Colourings that tile the hyperbolic or euclidian plane regularly.

Pivot Incidence
TileSignature/
Index
n-ColouringGyre
Count
Tile-Vertex
Incidence
tile 110011006031111081105\(2t^1t^6t^33f\)
110011006031111081105
\(t1,t1,t2,t2,t3,t4,f,f,t4,f,t3\)53, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
tile 110011006110311110805\(2t^1t^6ft^32f\)
110011006110311110805
\(t1,t1,t2,t2,t3,f,t4,f,f,t4,t3\)53, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
tile 110031111080401101107\(t^1t^32ft^4t^1f\)
110031111080401101107
\(t1,t1,t2,f,f,t2,t3,t4,t4,f,t3\)53, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
tile 110031111080411011007\(t^1t^32ft^4ft^1\)
110031111080411011007
\(t1,t1,t2,f,f,t2,t3,f,t4,t4,t3\)53, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
tile 110040110110703111108\(t^1t^4t^1ft^32f\)
110040110110703111108
\(t1,t1,t2,t3,t3,f,t2,t4,f,f,t4\)53, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
tile 110041101100703111108\(t^1t^4ft^1t^32f\)
110041101100703111108
\(t1,t1,t2,f,t3,t3,t2,t4,f,f,t4\)53, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
tile 110070401101107110411\(t^1t^7t^4t^13f\)
110070401101107110411
\(t1,t1,t2,t3,t4,t4,f,t3,f,t2,f\)53, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
tile 110070411011007110411\(t^1t^7t^4ft^12f\)
110070411011007110411
\(t1,t1,t2,t3,f,t4,t4,t3,f,t2,f\)53, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
tile 110071104011011070411\(t^1t^7ft^4t^12f\)
110071104011011070411
\(t1,t1,t2,f,t3,t4,t4,f,t3,t2,f\)53, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
tile 110110704011011071104\(t^1ft^7t^4t^12f\)
110110704011011071104
\(t1,t1,f,t2,t3,t4,t4,f,t3,f,t2\)53, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3