10-Colourings

10-Colourings

There are a total of 984 10-Colourings. You can browse them below.

Use the drop down to restrict the list to 10-Colourings that tile the hyperbolic or euclidian plane regularly.

Pivot Incidence
TileSignature/
Index
n-ColouringGyre
Count
Tile-Vertex
Incidence
tile 10101010101010101010\(10f\)
10101010101010101010
\(f,f,f,f,f,f,f,f,f,f\)110,10,10,10,10,10,10,10,10,10
tile 1090109010901090109\(5t^1\)
1090109010901090109
\(t1,t1,t2,t2,t3,t3,t4,t4,t5,t5\)63,5,3,5,3,5,3,5,3,5
tile 1090109010901091010\(4t^12f\)
1090109010901091010
\(t1,t1,t2,t2,t3,t3,t4,t4,f,f\)53,6,3,6,3,6,3,6,6,6
tile 1090109010902020808\(3t^12t^2\)
1090109010902020808
\(t1,t1,t2,t2,t3,t3,t4,t5,t4,t5\)43,7,3,7,3,7,7,7,7,7
tile 1090109010902100810\(3t^1t^22f\)
1090109010902100810
\(t1,t1,t2,t2,t3,t3,t4,f,t4,f\)53,5,3,5,3,5,4,4,5,5
tile 1090109010903010907\(3t^1t^3t^1\)
1090109010903010907
\(t1,t1,t2,t2,t3,t3,t4,t5,t5,t4\)63,4,3,4,3,4,4,3,4,4
tile 1090109010903101007\(3t^1t^32f\)
1090109010903101007
\(t1,t1,t2,t2,t3,t3,t4,f,f,t4\)53,4,3,4,3,4,3,3,3,4
tile 1090109010910010910\(3t^1ft^1f\)
1090109010910010910
\(t1,t1,t2,t2,t3,t3,f,t4,t4,f\)53,6,3,6,3,6,6,3,6,6
tile 1090109010910021008\(3t^1ft^2f\)
1090109010910021008
\(t1,t1,t2,t2,t3,t3,f,t4,f,t4\)53,5,3,5,3,5,5,4,4,5
tile 1090109010910101010\(3t^14f\)
1090109010910101010
\(t1,t1,t2,t2,t3,t3,f,f,f,f\)43,7,3,7,3,7,7,7,7,7
tile 1090109020208081010\(2t^12t^22f\)
1090109020208081010
\(t1,t1,t2,t2,t3,t4,t3,t4,f,f\)33,8,3,8,8,8,8,8,8,8
tile 1090109020308020708\(2t^1t^2t^3t^2\)
1090109020308020708
\(t1,t1,t2,t2,t3,t4,t3,t5,t4,t5\)43,4,3,4,4,4,4,4,4,4
tile 1090109020308100710\(2t^1t^2t^32f\)
1090109020308100710
\(t1,t1,t2,t2,t3,t4,t3,f,t4,f\)33,8,3,8,8,8,8,8,8,8
tile 1090109020408010906\(2t^1t^2t^4t^1\)
1090109020408010906
\(t1,t1,t2,t2,t3,t4,t3,t5,t5,t4\)43,7,3,7,7,7,7,3,7,7
tile 1090109020408101006\(2t^1t^2t^42f\)
1090109020408101006
\(t1,t1,t2,t2,t3,t4,t3,f,f,t4\)33,8,3,8,8,8,8,8,8,8
tile 1090109021008010910\(2t^1t^2ft^1f\)
1090109021008010910
\(t1,t1,t2,t2,t3,f,t3,t4,t4,f\)53,5,3,5,4,4,5,3,5,5
tile 1090109021008021008\(2t^1t^2ft^2f\)
1090109021008021008
\(t1,t1,t2,t2,t3,f,t3,t4,f,t4\)53,4,3,4,4,4,4,4,4,4
tile 1090109021008101010\(2t^1t^24f\)
1090109021008101010
\(t1,t1,t2,t2,t3,f,t3,f,f,f\)43,6,3,6,4,4,6,6,6,6
tile 1090109030109071010\(2t^1t^3t^12f\)
1090109030109071010
\(t1,t1,t2,t2,t3,t4,t4,t3,f,f\)53,5,3,5,4,3,4,5,5,5
tile 1090109030303070707\(2t^13t^3\)
1090109030303070707
\(t1,t1,t2,t2,t3,t4,t5,t3,t4,t5\)43,5,3,5,3,5,3,5,3,5
...